Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1820416

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral complications related to the COVID-19 were documented by brain MRIs during the acute phase. The purpose of the present study was to describe the evolution of these neuroimaging findings (MRI and FDG-PET/CT) and describe the neurocognitive outcomes of these patients. METHODS: During the first wave of the COVID-19 outbreak between 1 March and 31 May 2020, 112 consecutive COVID-19 patients with neurologic manifestations underwent a brain MRI at Strasbourg University hospitals. After recovery, during follow-up, of these 112 patients, 31 (initially hospitalized in intensive care units) underwent additional imaging studies (at least one brain MRI). RESULTS: Twenty-three men (74%) and eight women (26%) with a mean age of 61 years (range: 18-79) were included. Leptomeningeal enhancement, diffuse brain microhemorrhages, acute ischemic strokes, suspicion of cerebral vasculitis, and acute inflammatory demyelinating lesions were described on the initial brain MRIs. During follow-up, the evolution of the leptomeningeal enhancement was discordant, and the cerebral microhemorrhages were stable. We observed normalization of the vessel walls in all patients suspected of cerebral vasculitis. Four patients (13%) demonstrated new complications during follow-up (ischemic strokes, hypoglossal neuritis, marked increase in the white matter FLAIR hyperintensities with presumed vascular origin, and one suspected case of cerebral vasculitis). Concerning the grey matter volumetry, we observed a loss of volume of 3.2% during an average period of approximately five months. During follow-up, the more frequent FDG-PET/CT findings were hypometabolism in temporal and insular regions. CONCLUSION: A minority of initially severe COVID-19 patients demonstrated new complications on their brain MRIs during follow-up after recovery.


Subject(s)
COVID-19 , Vasculitis, Central Nervous System , COVID-19/diagnostic imaging , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Neuroimaging , Positron Emission Tomography Computed Tomography
2.
Clin Nucl Med ; 46(5): 413-414, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1119171

ABSTRACT

ABSTRACT: We present the case of a 64-year-old man presenting an episode of confusion during SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection with a positive oropharyngeal swab polymerase chain reaction test. He was hospitalized for dyspnea related to pneumonia demonstrated on chest CT. FDG PET performed after the confusion phase, but still in the COVID-19 (coronavirus disease 2019)-positive phase, showed high glucose metabolism of the inferior colliculi. Morphological MRI was normal. The first-pass perfusion MRI shows hyperperfusion of the inferior colliculi, corresponding to FDG PET hypermetabolism.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/metabolism , Fluorodeoxyglucose F18 , Inferior Colliculi/metabolism , Magnetic Resonance Imaging , Perfusion Imaging , Positron-Emission Tomography , Humans , Inferior Colliculi/diagnostic imaging , Male , Middle Aged
3.
J Infect Dis ; 223(4): 600-609, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101851

ABSTRACT

BACKGROUND: Neurological manifestations are common in patients with coronavirus disease 2019 (COVID-19), but little is known about pathophysiological mechanisms. In this single-center study, we examined neurological manifestations in 58 patients, including cerebrospinal fluid (CSF) analysis and neuroimaging findings. METHODS: The study included 58 patients with COVID-19 and neurological manifestations in whom severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction screening and on CSF analysis were performed. Clinical, laboratory, and brain magnetic resonance (MR) imaging data were retrospectively collected and analyzed. RESULTS: Patients were mostly men (66%), with a median age of 62 years. Encephalopathy was frequent (81%), followed by pyramidal dysfunction (16%), seizures (10%), and headaches (5%). CSF protein and albumin levels were increased in 38% and 23%, respectively. A total of 40% of patients displayed an elevated albumin quotient, suggesting impaired blood-brain barrier integrity. CSF-specific immunoglobulin G oligoclonal band was found in 5 patients (11%), suggesting an intrathecal synthesis of immunoglobulin G, and 26 patients (55%) presented identical oligoclonal bands in serum and CSF. Four patients (7%) had a positive CSF SARS-CoV-2 reverse-transcription polymerase chain reaction. Leptomeningeal enhancement was present on brain MR images in 20 patients (38%). CONCLUSIONS: Brain MR imaging abnormalities, especially leptomeningeal enhancement, and increased inflammatory markers in CSF are frequent in patients with neurological manifestations related to COVID-19, whereas SARS-CoV-2 detection in CSF remained scanty.


Subject(s)
Brain Diseases/cerebrospinal fluid , Brain/diagnostic imaging , COVID-19/complications , Aged , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/virology , COVID-19/cerebrospinal fluid , COVID-19/diagnostic imaging , Female , France , Humans , Inflammation/diagnosis , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies
4.
J Neuroradiol ; 48(3): 141-146, 2021 May.
Article in English | MEDLINE | ID: covidwho-978379

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral complications related to COVID-19 were recently reported, and the underlying mechanisms of brain damage remain uncertain, probably multifactorial. Among various hypotheses suggested, a possible vasculitis was issued but never confirmed. Herein, we aimed to describe brain MRIs focused on the intracranial vessel wall in a population of COVID-19 patients with neurologic manifestations. MATERIALS AND METHODS: Between March 1 and May 31, 2020, 69 consecutive COVID-19 patients with neurologic manifestations underwent a brain MRI allowing the study of the intracranial vessel wall at Strasbourg University hospitals and were retrospectively included. During the same period, 25 consecutive patients, without suspicion of SARS-CoV-2 infection, underwent a brain MRI urgently, with the same imaging protocols. A vasculitis seemed likely when imaging demonstrated vessel wall thickening with homogeneous and concentric enhancement. RESULTS: Among the 69 COVID-19 patients included, 11 (16%) presented arterial vessel wall thickening with homogeneous and concentric enhancement, compatible with cerebral vasculitis. These neuroimaging findings were not found among the 25 patients without SARS-CoV-2 infection, and the difference was statistically significant (p = 0.03). Middle cerebral arteries, basilar artery, and posterior cerebral arteries were the most frequent vessels involved. For nine of them, imaging demonstrated ischemic or hemorrhagic complications. CONCLUSION: Cerebral vasculitis of medium-sized vessels seems to be one of the mechanisms at the origin of brain damage related to COVID-19.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , Vasculitis, Central Nervous System/etiology , Adult , Aged , Aged, 80 and over , COVID-19/diagnostic imaging , Female , Humans , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Retrospective Studies , Vasculitis, Central Nervous System/diagnostic imaging , Young Adult
5.
J Neurol ; 268(8): 2676-2684, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-938566

ABSTRACT

BACKGROUND AND PURPOSE: During the COVID-19 outbreak, the presence of extensive white matter microhemorrhages was detected by brain MRIs. The goal of this study was to investigate the origin of this atypical hemorrhagic complication. METHODS: Between March 17 and May 18, 2020, 80 patients with severe COVID-19 infections were admitted for acute respiratory distress syndrome to intensive care units at the University Hospitals of Strasbourg for whom a brain MRI for neurologic manifestations was performed. 19 patients (24%) with diffuse microhemorrhages were compared to 18 control patients with COVID-19 and normal brain MRI. RESULTS: The first hypothesis was hypoxemia. The latter seemed very likely since respiratory failure was longer and more pronounced in patients with microhemorrhages (prolonged endotracheal intubation (p = 0.0002), higher FiO2 (p = 0.03), increased use of extracorporeal membrane oxygenation (p = 0.04)). A relevant hypothesis, the role of microangiopathy, was also considered, since patients with microhemorrhages presented a higher increase of the D-Dimers (p = 0.01) and a tendency to more frequent thrombotic events (p = 0.12). Another hypothesis tested was the role of kidney failure, which was more severe in the group with diffuse microhemorrhages (higher creatinine level [median of 293 µmol/L versus 112 µmol/L, p = 0.04] and more dialysis were introduced in this group during ICU stay [12 versus 5 patients, p = 0.04]). CONCLUSIONS: Blood-brain barrier dysfunction secondary to hypoxemia and high concentration of uremic toxins seems to be the main mechanism leading to critical illness-associated cerebral microbleeds, and this complication remains to be frequently described in severe COVID-19 patients.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Critical Illness , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL